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ABSTRACT

This paper presents a detailed account of the Pioneer 10 en-

counter with Jupiter as viewed by the Goddard/Univ. of New Hampshire

Cosmic Ray Experiment. Flux time histories of electrons and protons

are given over a wide energy band. These show a marked variation with

magnetic latitude. Significant removal of low energy protons by Io

is apparent in the inner magnetosphere (,6 R ). Proton and electron

energy spectra are given at various Jovicentric distances. The

electron spectra are remarkably hard and constant in slope in the

.12-8.0 MeV interval, the electron spectral index having a value of

1.5-2.0 in the region outside 25 R . Proton spectra are shown to

transform from a power law with indices in the 3-4.2 range to more

nearly exponential forms in the inner regions ( 40 R). Extensive

data are presented on the angular distributions of protons and

electrons at various locations in the Jovicentric nmagnetosphere.

In addition, a harmonic analysis of 1-2 MeV proton angular distributions

has been performed. Simple co-rotation is shown to exist out to .23 Rj.

Beyond this point other effects are contributing significantly to the

particle anisotropies. Alpha/proton ratios are given as a function

of Jovian radius and are compared to the earth and solar wind values.
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ENERGETIC PARTICLES IN THE JOVIAN MAGNETOSPHERE

I. INTRODUCTION

In this paper we provide a detailed account of the experimental

observations of the Jovian magnetosphere made by the Goddard/Univ. of

New Hampshire Pioneer 10 cosmic-ray experiment. Additional interpretive

papers on this data will follow at a later date. An informative series

of preliminary papers concerning the Jovian magnetosphere has appeared in

Science (Fillius et al., 1974; Simpson et al., 1974; Smith et al., 1974;

Trainor et al., 1974; and Van Allen et al., 1974). This experiment con-

sists of a set of three solid-state telescopes, each designed to compli-

ment the others and to cover a broad range in energy, intensity and charge

spectra. The three telescopes are shown schematically in Figure 1; they

are: 1) the High-Energy Telescope (HET), 2) Low-energy Telescope (LET-I),

and 3) Low-Energy Telescope-IT (LET-II). The HET and LET-I are designed

primarily for measuring the relatively low fluxes of cosmic rays in inter-

planetary space. As such their geometry factors are relatively large and

they cannot tolerate fluxes >2 x 10 5/cm2-sec-ster. Their usefulness is,

therefore, limited to the outer regions of the Jovian magnetosphere (>20 R).

They are, however, high resolution double dE/dX vs. E instruments that pro-

vide unambiguous particle identification and precise energy spectra so that

their contribution to the overall body of data is quite significant.

The LET-II telescope was designed to measure low-energy solar

flare particles in interplanetary space and trapped particles in the Jo-

vian magnetosphere. It has a relatively small geometry factor (1.5 x 10- 2

cm2-ster), and can readily measure fluxes up to %4 x 106/cm2-sec-ster. It

is surrounded by an aluminum and lead shield which will stop electrons

up to "25 MeV and protons to '140 MeV. The telescope employs a two-
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parameter analysis technique to separate electrons and protons. 
The

front element SI has an electronic threshold which is set such that

any electron penetrating to SII is below threshold and any proton

penetrating to SII is above threshold. Selected counting rates in

all three telescopes are divided into eight angular sectors to measure

particle anisotropies.

A major effort has been devoted to understanding the response of

all detector systems in the presence of intense particle fluxes. The

onset of saturation in the LET-I and HET systems is abrupt and well

defined. Negligible corrections are necessary prior to this saturation

point. As will be discussed in the Appendix, the LET-II corrections are

more complex. However, the response is now sufficiently well understood

so that the 1-2 MeV and 14-21 MeV proton fluxes can be determined over

the complete trajectory.

There is significant overlap in the response functions of the

three telescopes, and it was of great value to observe the consistency

between flux measurements made with completely different detector systems.

For example, the LET-I and LET-II proton data in the .5-2 MeV region

are in excellent agreement from 100-16 Rj. This is especially helpful

in the outer Jovian Magnetosphere where the nuclear component is small

(1-10%) compared to electrons of the same energy. Furthermore, LET-I

provides a very sensitive measurement of protons and alphas in the 3-20

MeV range down to a sensitivity of 10
3 protons/cm-sec-ster MeV up to

20 Rj. A complete description of this instrument will be published in

the IEEE Transactions on Nuclear Science (Stilwell et al., 1975). The
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energy and charge ranges of each telescope are summarized in Table 1.

Figures 2 and 3 give an overview of the Jovian electron and proton

fluxes as observed by the experiment, showing particle energies near

the upper and lower ranges of the instrument. In discussing these

observations, it is convenient to divide the Jovian magnetosphere into

4 regions:

1) The region outside the Jovian magnetosphere in which large fluxes

of MeV electrons and protons are observed to be coming from the magnet-

osphere: The MeV electrons are seen at distances of 1 AU away from

Jupiter. These are described in a companion paper (Teegarden et al.,

1974) which shows that, in fact, Jovian electrons have been a major

contributor to the 3-20 MeV electron flux measured at earth. A steady

increase in the flux of > 0.5 MeV protons was also observed - 5 Rj before

the crossing of the bow shock. These are probably also present at much

greater distances from Jupiter but at a much smaller intensity than

that displayed by the electrons.

2) The outer Jovian magnetosphere: This region extends from the

bow shock crossing (109 RJ) to ~ 50 RJ. The magnetic field is ~ 8-20y

and like the earth's tail is dominated by a neutral plasma sheath

which is drawing the field lines outward. It is a region of quasi-

trapping and diffusion. Both the electrons and protons show remarkably

constant energy spectraE-Y with y - 1.5-2.0 and 4 respectively. This

suggests that almost no acceleration occurs in this region. There are

rapid changes in flux and angular distributions. The high energy

electrons (i.e. > 6 MeV) show a reasonable 10 hour periodicity as
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expected since the nominal magnetic latitude of the spacecraft should

vary with the rotation period of the planet (n10 hrs). This is not

nearly as significant for the protons or for the lower energy electrons.

The changes in the proton and electron flux are frequently uncorrelated.

3) The region between %50 to 25 R is one of transition between

the outer diffusion zone and the point where the field rigidly rotates

with the planet. The proton energy spectra begin to change from a power

law to an exponential energy form on a gradual scale suggesting that

some acceleration is occurring. The angular distribution of the protons

display large (up to n70%) anisotropies and the hinging effect produced

by the transition is strongly evident. The magnetic field is still

changing rather slowly and it is not clear if the particles are stably

trapped.

4) Inside 25 Rj: The particle angular distributions indicate

that the field lines are rigidly rotating with the planet within "25 R ,

and this may mark the outer boundary for really stable trapping. This ra-

pid decrease in the co-rotation anisotropy provides further evidence that

the proton spectra are becoming increasingly flat below 1 MeV. At the

outer edge of this region there is a significant increase in the 1.2-2.1

MeV (Fig. 3) proton component which climbs steadily until 6 Rj. Inside

6 RJ the proton component is strongly attenuated by the presence of the

Jovian moon, Io. For example the 1-2 MeV component is reduced by a fac-

tor of 60 by Io absorption. The flux of all proton components then in-

creases until N0115 on Dec. 4, when the spacecraft crossed the magnetic

equator at 3.5 R .

The outbound trajectory (Fig. 2 & 3) near the dawn meridian was
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strikingly different from the inbound span in many respects. The peak

fluxes are near the predicted magnetic equator; however, the dominant

feature is the 10-hour periodicity which produces peak-to-valley ratios

of as much as 5 decades for a 200 excursion in latitude. This implies

that both electrons and protons are much more concentrated in the low

latitude region on the outbound pass.

2. ELECTRON AND PROTON SPECTRA

Figures 4 and 5 show the differential electron spectra measured

near the magnetic equator by the HET and LET-II telescopes on the

inbound and outbound passes, respectively. The spectra in this energy

range are remarkably hard and similar over the region outside ,.25 Rj

where we have measurements. The spectra are actually slightly harder

in the outermost regions and, as reported in the companion paper

(Teegarden et al., 1974), are very similar to the spectra of electrons

leaking from the Jovian magnetosphere and measured on Pioneer 10 many

months before encounter. This, of course, is quite different from the

behavior in the earth's radiation belts. We have found no obvious

correlation between the spectra shape in the .12-8.0 MeV region

and magnetic latitude.

Figure 6(a) through 6(g) show proton spectra measured by our

LET-I and LET-II telescopes in the energy region between 100 KeV and

21 MeV. The data from the magnetosheath region and from the radiation

belts in to 40 RJ seem to be well fitted by a simple power law with

an exponent of 4 but varying from 4.2-3.0 for brief periods. We inter-

pret this as indicating very little acceleration occurs in the outer

magnetosphere.
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Beginning with the measurements inside - 41 R the spectra are

better fitted by an exponential than a power law. Note that the one

data point plotted at 106 in Figure 6(d) has been arbitrarily plotted

there, since it would have fallen above a flux of 106/cm2 -ster-sec-MeV,

and a correction is required for LET-II data above that figure. None

of the LET-II data shown requires a correction of any kind. The

spectra near 22 Rj and 15 R show a similar exponential form. Note

in Figure 6(f) that two LET-II data points are now in the non-linear

region and therefore are not used. Similarly in Figure 6(f) one can

see that the LET-I telescope with its much larger geometrical factor

and lack of shielding has now become saturated and the apparent count

rates have fallen. Figure 6 (g) for comparison shows the spectra taken

in the first flux minimoutbound in the region 12.6-13.5 Rj. It is

well fitted by a power law of exponent 3.5.

3. JOVIAN ALPHA PARTICLES

Unambiguous alpha particle identification was obtained in the

3.2-5.6 MeV/nuc interval using two-parameter analysis in the LET-I

telescope. The alpha particle flux in this energy range was quite small

in the outer Jovian magnetosphere, making it necessary to average data

over fairly long time periods to obtain reasonable statistics. Figure 7

shows the ratio of alpha and proton intensities as a function of Jovian

radius for the inbound pass of Pioneer 10. A general decreasing trend

in the ratio is apparent with one exception, the point between 40 and

55 RJ. This point, however, occurs at the time when Pioneer 10 reentered

the magnetosheath (Wolfe et al., 1974a). The abnormally high value

of the point suggests that conditions near the boundary of the
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magnetosphere prevailed during this time and is, therefore, quite

consistent with Wolfe et al.'s (1974b) observations. The ratio varies

between %6x10 - 3 and %6x10 4 over the region measured. This is to be

compared with the solar wind a/p ratio which varies over the range

.01-.1 (see, for example, Wolfe et al., 1966; Gosling et al., 1967).

Thus the a/p ratio in the outer part of the Jovian magnetosphere is

closest to the solar wind values.

The a/p ratio in the earth's magnetosphere shows little L de-

pendence but apparently has a very strong latitude dependence (D.J.

Williams, private communication). The value of the ratio at earth spans

the range 10- 2 - 10 . With the limited statistical accuracy of our data

it is difficult to establish whether a strong latitude dependence exists.

The earth observations, however, were made in regions where particles

are stably trapped, and such is almost certainly not the case for the

measurements presented here.

4. PROTON AND ELECTRON ANGULAR DISTRIBUTIONS

Figures 8 through 11 sample the angular distributions measured for

two of our logical rates from the LET-II telescope, showing hourly

average data for .49-2.15 MeV protons and .78-1.0 MeV electrons. In

theoutermost regions of the magnetosphere anisotropies are present

and variable in both the electrons and protons. By the time one reaches

%70Rj (Fig. 8), the electrons have already settled down to a nearly

isotropic behavior, but the protons are still quite variable as to the

magnitude and direction of the anisotropy. The direction of the aniso-

tropy is generally correct for the co-rotation effect which should be from

the left of the figures. Figure 9 illustrates data from 40 to 35 Rj

showing that the electrons have become even more isotropic, and the proton
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distributions have settled down to a pattern more regular in amplitude

and direction. The rocking of the distribution due to the 10-hour

periodicity in the magnetic field is quite clear.

FigurelO illustrates data from 25 R to 19 R . The proton distri-

butions show a well defined, stable anisotropy from the co-rotation

direction. The electrons at the beginning and end of the period show

an extremely isotropic behavior; however, there is a huge double-ended

anisotropy seen as we approach the expected location of the magnetic

equator (See Figure 2). This anisotropy smoothly came and went over a

period of almost 4 hours and was aligned along the magnetic lines.

The out-bound data covered in this paper is summarized in Fig. 11.

These data are all taken near the flux maxima in 10-hour periodicity so

strongly apparent in the outbound data. Small anisotropies are commonly

seen in the electron data, most often a double-ended distribution and

presumably at the location of the magnetic equator. The protons

generally show a behavior similar to the inbound pass, except, of

course, that the sense of the co-rotational effect is from the right

now. In the data shown here outside 30 R , more variation in direction

is noted outbound than inbound at the same distance, and the proton

distribution shown near 47 Rj is most unusual. The co-rotational effect

is being completely masked. This behavior began after - 1400 UT and

persisted for several hours, again while the spacecraft was apparently

near the magnetic equator.

5. HARMONIC ANALYSIS OF PROTON ANGULAR DISTRIBUTIONS

The great extent of the Jovian magnetosphere combined with the

relatively short rotation period means that co-rotation anisotropies
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should be an important aspect of the particle angular distributions.

Furthermore, the weak, non-dipole Jovian magnetic field in the 50 -

25 Rj region ('20Y) suggests that anisotropies produced by particle

intensity gradients may be significant. A number of rates from the

three detector systems were sectored into 8 different bins for each

spacecraft rotation and then were summed over 5 rotations. In this sec-

tion we will be concerned with the LET-II data for the proton energy

intervals 1.2-2.15 MeV. In addition there were 4 electron intervals

extending between .1 and 2 MeV.

The opening angle of the LET-II (300) is small compared to the

450 sector width so no deconvolution of the data is required. A

harmonic analysis of the form

J(O) - Ao + Al sin (0 - 081) + A2 sin 2 (0 - 82)

was performed on the 3600 sec averages. The resulting values for A /Ao,

81 and A2/A for the 1.2-2.2 MeV interval are shown in Figures 12, 13

and 14. Examining the plot of 01, there are large systematic fluctuations

which steadily decrease and at 23 R there is a well-defined "hinge point"

with the particles coming from the direction 01 900 as one might expect.

Inside this point there would appear to be rigid rotation of the

field with the rotation of the planet. Thus 23 Rj is probably an upper

limit on the region of durable trapping. This is also the point where

there is a steady increase in the 14-21 MeV proton flux. We have not

completed the analysis of the variation of 01 in the transition re-

gion between 50 and 25 R . This region is obviously "hinged" between

the outer diffusion region and that of rigid rotation. However, there

are probably other effects present. The changes observed in the low-

energy (.4-1 MeV) proton spectra suggest the particles in this region
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are being accelerated at a very slow rate.

A1 / A o is a measure of the first order anisotropy. The

expected co-rotation anisotropy is given by

f(vl) - f(v2)
T (v + f(vO)

v I  Vr + v

v " Vr - v

where f(v) - J(E) is the non-relativistic particle distribution function,
E

v is the particle velocity and Vr - wr is the rotation velocity.

For power-law spectra this is of the form

E Y+ 1 - Ely+1

E2 7I + El Y+1

and for y - 4 this reduces to

(v + V)2 0 - (v - V)10
(v + V)"' + (v- V)

For the 1.2 - 2.2 MeV region E s 1.4 MeV; v - 1.6 x 10'm/sec;

Vr - 12.6 N x 103, where N is the distance to the observing point

measured in units of Rj (= 7.137 x 107m). At 25 Rj, Vr = 3xl05m/sec;

Vr/v - .019; t = 18%; at 50 RJ this increases to 37%. The expected

co-rotation anisotropy for y = 4 is shown as a dashed line in Fig. 12.

The agreement with the innermost values of A1/Ao is good. The larger

peaks of A1 /Ao between 25 and 50 Rj are not understood. At 25 RJ

the magnetic field is - 20y and the gyroradius of a 1.4 MeV proton is

12x10sm. A gradient anisotropy of the order of 1 dJ is expected.
R dR

This means that 100% increases per Jovian Radii would give an anisotropy

of - 20% in the same direction as the co-rotating anisotropy for negative

values of dJ/dR (i.e.. value of J increasing with decreasing Rj). This
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may be the explanation for the large increases in A1/Ao which more

closely coincide with minima in the particle intensity. For smaller

values of v/Vr, A1/Ao reduces to the Compton-Getting factor

= (2 + o y) v/Vr where ct is the following function of energy

T + 2moca

T + moca

For electrons the smaller value of a and y and the smaller value of

v or all combine to make the 0.5 MeV electron co-rotation anisotropy

- 30 times smaller than that of the protons and explain the difference

generally observed between the two components.

The second harmonic A2 /Ao is shown in Figure 14-. The peaks anti-

correlate with the AI/A o peaks and coincide with the intensity maxima

observed at or near the Jovian magnetic equator. This suggests a more

stable population exists at this point.

6. PROTONS INSIDE lORJ

Protons in the inner region are treated separately in this section

since the extremely high flux rates inside 10R have caused the

detector response to enter a non-linear regime and significant corrections

are required. These corrections are discussed in detail in the Appendix.

Proton count-rate data from 1830 UT on December 3 to 1130 on December 4

are shown in Fig. 15 for the 1.2 to 2.15 MeV protons and 14.8 to 21.2

MeV protons where the curves shown are derived from averages over 144

seconds. These two energies were chosen since they correspond to relatively

large energy losses respectively in the SI and SII elements of the LET-II

telescope (see Fig. 1). The electron efficiencies for these counting

rates are consequently quite small. Also shown in Fig. 15 are the

angular distributions for 1.2-2.15 MeV protons from data averaged over
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15 minutes.

The angular distributions shown in Fig. 15 for the 1.2 to 2.15 MeV

protons are most interesting. The spacecraft was at ~ 20*S magnetic

latitude at - 1730 and moving inbound towards the magnetic equator which

it crossed at - 0100 on December 4. On the outbound leg, we reach a

maximum northerly latitude of - 20* at ~ 0500 and return to near the

equator at . 1000 on December 4. A small anisotropy, undoubtedly due

to corotation, exists for many hours, up to - 1900 on December 3. Then

as the spacecraft moves towards the equator (2000-2130) a small double-

ended anisotropy appears with maxima perpendicular to the field lines.

(It is difficult to see this effect in Fig. 15 due to the photographic

reduction.) From our detailed data, this situation has clearly ended

by 2230, going over to an X-type distribution from 2300 to 2330, and

evolving in a complicated fashion to a bi-lobed distribution near the

magnetic equator. The outbound data is the inverse of the above, with

the exception that the anisotropies are larger at later times since the

spacecraft is much nearer the equator.

Two important conclusions are obvious. As one moves across Io's

orbit and observes a flux drop of a factor of 60, the angular distri-

bution of the particles changes very little, although it is apparent that

there is a small preference for Io removing particles with smaller pitch

angles. Inside the orbit of Io, as the flux in this energy interval in-

creases, it is apparent that particles are at first preferentially added

at small pitch angles for a period of 30-45 minutes, and then preferen-

tially at large pitch angles as the spacecraft moves towards the crossing
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of the magnetic equator. Outbound the inverse sequence is true.

There are several features of the flux curves of Fig. 15 which

deserve comment. The most obvious is the huge effect of Io in removing

protons in the - 1 MeV range. Had the effect not occurred, one could

speculate that the flux of these protons could have been - 1 0x°(cm!sec)-1

at 0100 on Dec. 4. Long before encounter several authors (Mead and

Hess, 1974; Birmingham et al., 1974) had predicted the sweeping effect

of the Jovian moons. While the effects do occur, in detail they are

quite different from the predictions, depending upon the moon and the

energy range. A later work (Hess et al., 1974) improves on the earlier

work. Differences in detail, however, still exist.

The shape and size of the Io effect is quite similar inbound and

outbound, although the spacecraft was leading Io in its orbit by

less than 90' inbound and bymore than 180* outbound. It thus appears

that there is little azimuthal dependence of the effect for the 1.2-2.15

MeV protons and only a small one for the 14.8-21.2 MeV protons. These

higher energy protons do show a smaller but clear signature in crossing

the orbit of Europa inbound and outbound, although the magnitude appears

to be somewhat different in the two cases. In the lower energy protons,

there is a small effect at Europa inbound when the spacecraft was well

off the equator and no observable effect outbound near the equator.

These observations are quite consistent, since one expects the moons

to have asmaller effect on particles which are mirroring near the equator.

Simpson et al. (1974), have pointed out a small latitude effect

for the > 35 MeV protons. Those protons showed very strong maxima

near L - 3.6 Rj. The first peak was largest and occurred essentially
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at the magnetic equator while the second peak occurred 
at - 15N.

Our data for the lower energy protons show a maximum 
in the flux at

-0100 on Dec. 4, near the magnetic equator, but not the striking 
maximum

shown in the > 35 MeV data. However, on the outbound trajectory both

of our lower energy proton fluxes show slight maxima at the time of

the second peak reported by Simpson et al. (1974).

The fluxes of protons measured by this instrument inside 
the

crossing of the magnetic equator continue to fall off, 
but it is

obvious from the fluxes at ~ 0100 and - 0330 when the spacecraft was

at L - 3.6 that the latitude dependence is not large over the latitude

range covered by Pioneer 10. The decrease in fluxes inbound to periapsis

may well be due to the effects of Amalthea, which orbits at 2.55 
Rj.

Apparently due to diffusion, the effects of 
particle removal by Io were

seen at least 1 RJ outside the orbit of Io. A similar effect may

indeed be present due to Amalthea.

The Pioneer 11 spacecraft will encounter Jupiter in early December,

1974. Two advantages of its trajectory are the high latitude region

covered and the very close approach to the planet. One should learn a

great deal more about this most interesting inner 
region if the spacecraft

survives.
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APPENDIX: DETECTOR RESPONSE
IN HIGH FLUX REGIONS

We shall first discuss the problem of high rates in the logical

anti-elements, SIIa and SIII, which form the anti-cup around SII. At

the peak of the electron fluxes near -0100 on Dec 4 these detectors

were truly counting a few million counts per second. At count rates

less than 5 x 104 counts/sec in the anti-elements, the system logic

works as intended; however, at very high count rates, the dead time of

a given threshold circuit, coincidence circuit or anticoincidence

circuit becomes appreciable compared with the average time between

true events. (Circuit dead time is here defined as the time after one

event has been completed before another event can be recognized.) In

effect, the anti-circuitry leaks at high count rates, and the leakage

actually approaches asymptotic values of 15% to 30% depending upon

pulse height. Thus, as one moves into the inner regions of the Jovian

magnetosphere (inside about 10 Rj), a correction term is needed for

the 14.8 to 21.2 MeV protons which depends upon the anti-element

count rates.

The lower energy protons are logically selected as SI(8)TSISIaSIII

and are subject to a similar correction term as the higher energy protons.

The SI(8) refers to the highest level threshold on SI of 1.2 MeV. From

ground tests with random pulses and accelerator tests, we came to ex-

pect a maximum correction factor of -5 in the region inside -8 Ri. With

an apparent count rate of -104 counts per second just outside lo, this
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would lead to a "true" count rate of '5 x 104 counts/sec, and by the

performance data shown in Figure Al, a further 
correction (maximum factor

of 1.4) would be needed for this effect, resulting in a net 
correction

factor of u7.

We were also able to calculate a value for the correction factors

in two other ways from the data itself, using the angular distributions

such as plotted in Figure 15 and the count rate saturation properties

as shown in Figure Al. There is a small anisotropy apparent in the plots

before and after passing through the count rate peaks just outside Io,

but the distribution is nearly isotropic in the 15 minute interval

while passing through the peak fluxes, If one assumes the distribution

really is intermediate in anisotropy to that measured before and after

the peak, then one can use the saturation properties 
from Figure 15

to arrive at the true distributions and count rates, and thus also the

correction factors. For this case, the calculation resulted in a total

correction factor of 7.4 in good agreement with the previous estimate 
of

the anti-rate correction with a superimposed count rate correction.

The second method involves using the angular distributions of

two different energy levels of SI while there is a good anisotropy

present and when one is very certain that one distribution needs 
no

count rate correction due to saturation effects, and the other dis-

tribution does need a substantial correction. In the period 2300 to

2400 on December 3, SI(8) (1.2-2.15 MeV) was showing a marked anisotropy

while S1(7) (.78-2.15 MeV) showed a similar but smaller effect and
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SI(6) (.49-2.15 HeV) showed the inverse of SI(8). The count rate in

SI(6) was -250 times that in SI(8) and would require a correction for

count-rate saturation while SI(8) at -400 cts/sec would require no

count-rate correction. If one assumes that the SI(6) distribution

should be the same as the SI(8) distribution, then using the data of

Figure Al, one can calculate the true rates and the apparent

rates sector-by-sector for SI(6), and by comparing the true apparent

rate with the measured apparent rate, arrive at the value of the

correction factor for the anti-element term. This should be the same

for SI(6) and SI(8). The calculation for the period 2300-2400 on

December 3 results in a value of 6.9 for this factor, again in fair

agreement with the estimates from ground test. Similar calculations

hourly through 0400 result in correction factors ranging from 5.3 to

3.2.

The smaller correction factors are associated with the peak

count rates around 0115 where the true count rates for SI(6) were

-6 x 105 counts/second. There is a larger uncertainty in these smaller

factors due to the fact that one is in a region where the SI(6) apparent

rates are rolling over rapidly while going into saturation.

Since the ground testing and the two different inflight methods

all arrive at correction factors which agree withix 50% of one-another

we are able to construct a multiplicative correction curve for SI(8)

ranging from 1.0 at 1700 on December 3, to 7.5 at 2112, to 6 at 22.2,

to 7 at 0112, to 6 at 0600, to 7.5 at 0700, to 6 at 1000, and finally

to 1 at 1300 on December 4. Using this correction curve, the count
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rates of Figure 14 are converted to the fluxes shown in Figure A2.

The uncertainty in these proton fluxes is due entirely to the uncer-

tainty in the correction factor and we estimate this to be less than

a factor of 2.
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FIGURE CAPTIONS

1. Schematic drawing of the solid-state detector telescopes.

2. Electron time histories during the Pioneer 10 Jovian encounter.

Angular distributions are given for selected time periods. Tick

marks show points at which Pioneer 10 was predicted to be closest

to the magnetic equator, based upon a rigidly rotating field

due to a tilted dipole.

3. Proton time histories in two different energy intervals. Times of

crossing of the orbits of the innermost Galilean satellites are shown

respectively as JI, JII and JIll.

4. Electron differential energy spectra on the inbound pass of Pioneer

10 at three different values of RJ.

5. Electron differential energy spectra on the outbound pass of Pioneer

10 at three different values of RJ.

6. (a)-(g) Proton differential energy spectra at different values of

Jovian radius.

7. Alpha-to-proton flux ratio as a function of Jovian radius. Ratio

is taken for equal values of energy/nucleon.

8. Polar plots of angular distributions of proton and electron counting
rates. Top of the figure is towards north ecliptic pole. The

normal out of page is in direction of spacecraft spin axis.

9. Polar plots of angular distributions of proton and electron counting
rates. Orientation of plots is the same as in Figure 8.

10. Polar plots of angular distributions of proton and electron counting

rates. Orientation of plots is the same as in Fig. 8.

11. Polar plots of angular distributions of proton and electron counting
rates. Orientation of plots is the same as in Figure 8.

12. Magnitude of the first harmonic of the proton 1.2-2.15 MeV angular
distribution as a function of time and Jovian radius; dashed line
indicates magnitude of anisotropy predicted from co-rotation.

13. Direction of the first harmonic as a function of time and Jovi-
centric distance. Note that the scale on the left is different from
the scale on the right. The dashed line indicates the regions
where the different scales apply.
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14. Amplitude of the second harmonic of the 1.2-2.15 MeV proton counting

rate as a function of time and Jovian radius.

15. Time histories of proton count rates at two different energies for

the near-periapsis period. 15 minute averages of angular distribu-

tions are also shown plotted at the center of the 15-minute periods.

Locations of orbital crossings of Io and Europa are indicated.

Al. Representative correction curves for count-rate saturation for two

of the LET-II counting rates.

A2. Corrected proton flux time histories for the near-periapsis period

at two different energies.
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TABLE 1.

DETECTOR CHARACTERISTICS

Detector Energy/Particle Range

HET 2.1 - 8.0 MeV electrons
20 - 500 MeV/Nuc protons and alphas
40 - 120 MeV/Nuc medium nuclei

LET-I .4 - 3 MeV/Nuc protons (single parameter analysis)
3 - 21 MeV/Nuc protons and alphas
6 - 40 MeV/Nuc medium nuclei

LET-II .05 - 2.1 MeV electrons (electron-proton separation
above .12 MeV)

.2 - 21 MeV protons



33* CONICAL
FOV

FRONT LOOK
ANGLE

500 CONICAL
FOV

LOOK 30* CONICAL
FRONT LOOK FOV

ANGLE FRONT LOOK

DI

I B

I S I I

Cm f uSm

FOV

REAR LOOK
ANGLE LET-I TELESCOPE LET-I TELESCOPE

HET TELESCOPE

PIONEER F aG DETECTOR COMPLEMENT

COSMIC RAY ENERGY SPECTRA

Fig. 1



JOVIAN RADII

120 110 100 90 80 70 60 50 40 30 20 10 2.8 10 20 30 40 50 60 70
i I I I I I I I I I I IIIII

PROTONS ELECTRONS

10 0.49-2.15MeV 0.78-2.0 MeV .41-2.0 MeV ELECTRONS

.Oo

) ' 3:00
3 DEC. 1973 1:00 2:00 300

10 - 3 DEC. 1973

t >6 MeV ELECTRONS
10 t MAGNETOPAUSE

BOWSHOCK

26 27 28 29 30 I2 3 4 5 6 7 8

NOVEMBER 1973 DECEMBER 1973 DECEMBER 1973

Fig. 2



JOVIAN RADII
e 80 70 60 50 40 30 20 10 2.8 10 20 30 40 50 60 70

T- 10I

10 -30* CONICAL
=E FOV

S I FRONT LOOK
-"c ANGLE

10 0 LET-I TELESCOPE t t
IL.

o 1.1- 2.15 MeV
14.8-21.2 MeV JI

100 &I

29 30 1 2 3 4 5 6 7 8

NOV 1973 DEC 1973

Fig. 3



10 '6ss ,,

10INBOUND PASS 103 OUTBOUND PASS8 10 e

,o4 , E (a) 102  (b)

3 1

S10

I-S103 0

10 59.5 R 51.3 Rz I E-2 10E
0 10 

0 -

S105 Io 5

39.8 R, 9 10)

O -j , -i.25.3 R,

10 4 10 I

a 1 0 ' - - 1 0 I - I 1

ENERGY (MeV) ENERGY (MeV)

Fig. 4 Fig. 5



. 11/27/73 0900-1000 11/27/73 2200-2300
w 102- 101.5 RJ 95.2-94.7 Rj

S10 4  E4S 10 E-3"9

I-- 10 -i 0 

I I 1 1 1111 i11 I I 1 1 l il I I I l0 I I 11 a1 I I a i t

. 10 100 .1 I 10 100

ENERGY (MeV)
o LET-I *LET-I *LET-I PHA PIONEER 10

Fig. 6a Fig. 6b



T - 10I * , , , * , , .evil 10 , I I I I II * * * T 1 1 i

> 12/1/73 2300-2400
- 12/1/73 1900-2000 40.7-40.1 R43.2-42.6 RJ 074

104_ 43.2 -42.6 Rj - 104 - -

o- "-3.0

a- -

3i 10
o .I0 t1 o. t

C 0 10..- . - - -
.1 I 10 100 .1

ENERGY (MeV)

o LET- * LET-1 * LET-I PHA PIONEER 10

Fig. 6c F , 6d



10 - - 10
w

10o  12/3/73 0300-0400 10o 12/3/73 1100-1200
U. 22.0-21.2 R, 15.8-15.0 Rj
z
o 107 -210 10

.1 I 10 100 .1 I 10 100

ENERGY (MeV)
oLET-I *LET-I oLET-I PHA PIONEER 10

Fig. 6e Fig. 6f



i)

W 104
cf

W

10

12/4/73 1400 -1500

100 - 12.6 -13.5 R
LL E-3.5

z
0

I I I J

.1 I0 100

ENERGY (MeV)

PIONEER 10
Fig. 6g



O-2

10 I I I I I I I I I

ALPHA / PROTON RATIO
3.2-5.6 MeV/NUCLEON

C -3
10 - -

I0

10 20 30 40 50 60 70 80 90 100

JOVIAN RADI I
Fig. 7



ANGULAR DISTRIBUTIONS JUPITER
INBOUND PASS 67.1-71.6 Rj

/ e- 330

PIONEER 10 /

PROTONS 0.49-2.15 MeV '57.

20 20 20 20 20 20 20 20 TO SUN

S( \ SPIN AXIS
1 8 (TO EARTH)

ELECTRONS 0.78-1.0 MeV

S. 2. 02 2 0. 20 20.

20 21 22 23 24 I 2 3 HOUR

29 NOV. 1973 30 NOV. 1973

Fig. 8



ANGULAR DISTRIBUTIONS JUPITER
INBOUND PASS 34.6-39.8 RAj

Ain

PIONEER 10

PROTONS 0.49-2.15 MeV

tO SUN

SPIN AXIS
(TO EARTH)

ELECTRONS 0.78-1.0 MeV

0. 20. 20. 20. 20. 20. 20. 20.

2 3 4 5 6 7 8 9 HOUR

2 DEC 1973

Fig. 9



ANGULAR DISTRIBUTIONS JUPITER
INBOUND PASS 19.1-25.0 Rj

PROTONS 0.49 -2.15 MeV

TO SUN20 20 20 20 20

S(TO EARTH)

ELECTRONS 0.78-1.0 MeV

24 I 2 3 4 5 6 7 HOUR

DEC 1973 3 DEC 1973

Fig. 10



ANGULAR DISTRIBUTIONS
OUTBOUND PASS

19.2 R,

32 25.8 Ro  32.7 RJ 46.7 Rj

JUPITER 750 JUPITER 78* JUPITER 83 JUPITER
I 58 115 1120 107*

SPIN AXIS SPIN AXIS SPIN AXIS SPIN AXIS

TO SUN TO SUN TO SUN TO SUN

PROTONS 0.49- 2.15 MeV

20 20 20 20 20 20 20 20

ELECTRONS 0.78-1.0 MeV

22 23 7 8 17 18 15 16 HOUR
4 DEC 1973 5 DEC 1973 5 DEC 1973 6 DEC 1973

Fig. 11



100 -

90 PIONEER 10 LET-I
1.1-2.15 MeV PROTONS

80

70

10 -

= 0 '

48.3 42,3 36.4 298 22.7 14.8 \.3.9 8.9

DEC I DEC 2 DEC 3 DEC 4
tg. 12



I

180 PIONEER 10 LET I - 360

1.1-2.15 MeV PROTONS

160 - 340

140 I - 320

U) 120 I00 U)wI
w w

w 100 u 280 ow

S80 I 260 *-

60- J 240

40 220

20- I 200
., 48.3 42.3 36.4 29.8 22.7 14.8 8.9 17.8

0RJOI I II 180
DEC I DEC 2 DEC 3 DEC 4

Fig. 13



90
PIONEER 10 LET-I

80 1.1-2.15 MeV PROTONS

70
48.3 42.3 36.4 29.8 22.7 14.8 8.9 17.8

60 R

50-
z

I 40

o 30

20

10 -

0 i

DEC I DEC 2 DEC 3 DEC 4

Fig. 14



I0

1.2-2.15 MeV
10 PROTONS

I-
z
0
o PERIAPSIS

S10 - EUROPA

S14.8-21.2 MeV

.< Io' PROTONS

1900 2000 2100 2200 2300 0100 0200 0300

DECEMBER 3 DECEMBER 4

Ios

z 10
o 12-2.15 MeV

PROTONS

o

IO: O - EUROPA
c-

14.8 - 21.2 MeV

S1PROTONS

0400 0500 0600 0700 0800 0900 1000 1100

DECEMBER 4
Fig. 15 U.T. AT PIONEER 10



10 1 1i i ll I --l " I . . - T J

PIONEER 10 CRT
LET-I S EthISO key -

SE/ 0 k V
Z
O -

w 5

4  / SI Eth* 2 MeV
10 -

10/

103  104  105  !06

TRUE COUNTS / SECOND
Fig. Al



-I

PERIAPSIS

EUROPA 10 IO EUROPA

10 8-2.2 MeV 3 2.8 3-4GS/UNH 14.8-21.2 MeV

(r

0.. JOVICENTRIC DISTANCE

10 -- 8--7--6--5--4-- 3--2.8--3 4--5--6-- 7--8---9--0-

1900 2000 2100 2200 2300 0100 0200 0300 0400 0500 0600 0700 0800 0900 1000 1100

DECEMBER 3 DECEMBER 4

UT. AT PIONEER 10

Fig. A2


